

Sônia Maria de Freitas

Metodologia Estatística para Validação de Métodos Analíticos Aplicável à Metrologia em Química

DISSERTAÇÃO DE MESTRADO

Programa de Pós-graduação em Metrologia para

Qualidade Industrial

Rio de Janeiro Abril de 2003

Sônia Maria de Freitas

Metodologia Estatística para Validação de Métodos Analíticos Aplicável à Metrologia em Química

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Metrologia para Qualidade Industrial.

Orientador: Prof. Eugenio Kahn Epprecht

Co-orientadora: Prof. Terezinha Ferreira de Oliveira

Co-orientadora: Prof. Roberta Lourenço Ziolli

Rio de Janeiro Abril de 2003

Sônia Maria de Freitas

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Metrologia para Qualidade Industrial – PUC-Rio. Aprovada pela Comissão Examinadora.

Prof. Ph.D. Eugenio Kahn EpprechtOrientador
Departamento de Eng. Industrial – PUC-Rio

Prof^a. M.Sc. Terezinha Ferreira de Oliveira Co-orienadora Departamento de Estatística - UFPA

> Prof^a. Dr^a Roberta Lourenço Ziolli Co-orientadora Departamento de Química – PUC-Rio

Prof. Ph.D. Alcir de Faro OrlandoDepartamento de Engenharia Mecânica – PUC-Rio

Prof. D.Sc. Norbert MiekeleyDepartamento de Química – PUC-Rio

Prof. Ney Augusto Dumont

Coordenador de Programas de Pós-Graduação do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 11 de abril de 2003

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e dos orientadores.

Sônia Maria de Freitas

Graduou-se em Bacharel em Estatística (Universidade do Estado do Rio de Janeiro) em 1988. Obteve uma pós-graduação latu sensu em Engenharia Econômica pela Universidade Federal do Rio de Janeiro em 1996. Atuou profissionalmente na área de Estatística aplicada à Saúde de 1987 a 1994. Foi professora de Estatística em cursos de graduação e de especialização profissional de 1988 a 2001.

Ficha Catalográfica

Freitas, Sônia Maria

Metodologia Estatística para Validação de Métodos Analíticos Aplicável à Metrologia em Química /Sônia Maria de Freitas; orientador: Eugenio Kahn Epprecht e co-orientadoras: Terezinha Ferreira de Oliveira e Roberta Lourenço Ziolli – Rio de Janeiro: PUC, Programa de Pós-graduação em Metrologia para a Qualidade Industrial, 2003.

Para meus pais, filho, irmã, sobrinhos e meu marido Celso, pelo apoio de sempre.

Agradecimentos

Ao Professor Eugenio Kahn Epprecht e a Professora Roberta Lourenço Ziolli pelo acolhimento, paciência e parceria no caminho para realizar este trabalho.

À Professora Terezinha Ferreira de Oliveira, do Departamento de Estatística da Universidade Federal do Pará, por sua ajuda e participação na realização deste trabalho.

À PUC-Rio, pelo auxílio concedido durante o curso.

Aos funcionários da PUC-Rio, em especial para Eliane – secretária do curso.

Aos professores que aceitaram participar da Comissão examinadora.

À minha amiga Neyde Zambelly, por ter me ajudado a descobrir a metrologia.

Ao Edney Joubert Ferreira Bittencourt, por estar sempre pronto a colaborar.

Aos meus amigos pessoais pela compreensão nas ausências.

Aos meus pais pelo carinho, confiança e incentivo em todos os momentos.

Ao Celso, pelo apoio para que eu conseguisse atingir meus objetivos mais difíceis.

Ao meu filho Rafael, por tantas alegrias e ensinamentos que tem me dado.

Resumo

Freitas, Sônia Maria; Epprecht, Eugenio Kahn. **Metodologia estatística** para validação de métodos analíticos aplicável à metrologia em química. Rio de Janeiro, 2003. 106p. Dissertação de Mestrado — Centro Técnico Científico, Pontifícia Universidade Católica do Rio de Janeiro.

A metodologia estatística escolhida para validação de métodos analíticos aplicável à metrologia em química é fundamental para assegurar a qualidade, comprovar a eficiência e demonstrar a exatidão dos resultados das medições nas análises químicas. Essa metodologia, desenvolvida em conformidade com o rigor metrológico, resulta num sistema de medições validado, confiável e com incertezas quantificadas. Este trabalho propõe uma metodologia geral para validação de métodos analíticos. A metodologia desenvolvida resultou de uma síntese de métodos parciais descritos na literatura, e inclui uma escolha crítica de técnicas mais adequadas dentro das alternativas existentes. A abordagem proposta combina quatro diferentes aspectos da validação: a modelagem da curva de calibração; o controle da especificidade do método; a comparação da tendência e precisão (repetitividade e precisão intermediária) do método com um método de referência; e a estimação das componentes de incerteza inerentes a todos esses aspectos. Como resultado, além de uma proposta para validação de métodos para uso em análises químicas, obtêm-se a função de calibração inversa e as incertezas expandidas, que permitem obter os resultados analíticos associados aos valores da resposta, com suas respectivas incertezas associadas. Na modelagem geral para obtenção da curva de calibração, empregam-se técnicas estatísticas para avaliação da linearidade e para o cálculo do mínimo valor detectável e do mínimo valor quantificável. A especificidade do método analítico é avaliada pela adição de padrões a um conjunto de amostras representativas e posterior recuperação dos mesmos, com ajuste por mínimos quadrados e testes de hipóteses. Para estudar a tendência e a precisão do método quando comparado a um método de referência, utiliza-se um modelo hierárquico de quatro níveis e a aproximação de Satterthwaite para determinação do número de graus de liberdade associados aos componentes de variância. As técnicas estatísticas utilizadas são ilustradas passo a passo por exemplos numéricos.

Palavras-chave

Incerteza de medição; Validação de métodos analíticos; Comparação de métodos analíticos; Metrologia Química; Métodos Estatísticos.

Abstract

Freitas, Sônia Maria; Epprecht, Eugenio Kahn. **Statistical methodology for analytical methods validation applicable chemistry metrology.** Rio de Janeiro, 2003. 106p. MSc. Dissertation – Centro Técnico Científico, Pontifícia Universidade Católica do Rio de Janeiro.

The use of statistical methodology for analytical methods validation is vital to assure that measurements have the quality level required by the goal to be attained. This thesis describes a statistical modelling approach for combining four different aspects of validation: checking the linearity of the calibration curve and compute the detection and the quantification limits; controlling the specificity of the analytical method; estimating the accuracy (trueness and precision) of the alternative method, for comparison with a reference method. The general approach is a synthesis of several partial techniques found in the literature, according to a choice of the most appropriate techniques in each case. For determination of the response function, statistical techniques are used for assessing the fitness of the regression model and for determination of the detection limit and the quantification limit. Method specificity is evaluated by adjusting a straight line between added and recovered concentrations via least squares regression and hypotheses tests on the slope and intercept. To compare a method B with a reference method A, the precision and accuracy of method B are estimated. A 4-factor nested design is employed for this purpose. The calculation of different variance estimates from the experimental data is carried out by ANOVA. The Satterthwaite approximation is used to determine the number of degrees of freedom associated with the variance components. The application of the methodology is thoroughly illustrated with step-by-step examples.

Keywords

Uncertainty of analytical results; Validation of analytical methods; Comparison of analytical methods; Chemical Metrology; Statistical Methods; Chemical Measurement Process (CMP).

Sumário

1 Introdução	17
2 Incerteza de medição	21
3 Modelagem da curva de calibração	27
3.1 Sinal observado e função de calibração	28
3.2 Faixa de trabalho e linearidade do método	29
3.3 Mínimo valor detectável e mínimo valor quantificável	32
3.4 Avaliação da curva de calibração	34
3.4.1 Etapa A ₁ - Gráfico da resposta como função das concentrações	37
3.4.2 Etapa A ₂ - Modelo de regressão e determinação dos resíduos	37
3.5 Etapa A ₃ - Composição da resposta a partir das séries	43
3.6 Etapa A ₄ - Heterogeneidade da variância	43
3.7 Etapa A_5 - Avaliação da linearidade da curva composta p	para
estabelecimento da faixa de trabalho	43
3.8 Etapa A ₆ – Modelo linear resultante	44
3.9 Incerteza da curva de calibração	44
4 Especificidade do método	49
4.1 Avaliação da especificidade do método	49
4.2 Avaliação das incertezas devidas à fortificação	51
5 Comparação de métodos	53
5.1 Exatidão e Precisão do Método	53
5.2 Modelo estatístico básico	58
5.2.1 Estimativa dos componentes de variância	59
5.3 Número de medições	62
5.3.1 Determinação do número mínimo de medições necessária	s à
obtenção de λ	63

5.3.2 Determinação do número mínimo de medições necessárias	à
obtenção da menor razão entre os parâmetros que representam	а
precisão	65
5.4 Testes de avaliação	68
5.4.1 Comparação da precisão	68
$\begin{cases} \mathbf{H}_0 : \sigma_{\mathbf{B}}^2 \le \sigma_{\mathbf{A}}^2 \\ \mathbf{H}_{\mathbf{A}} : \sigma_{\mathbf{B}}^2 > \sigma_{\mathbf{A}}^2 \end{cases}$	68
5.5 Avaliação da tendência	71
6 Exemplos de Aplicação	75
6.1 Exemplo 1 - Avaliação das incertezas de medição através	de
componentes individuais do método analítico	75
6.1.2 Identificação e análise das fontes de incerteza	76
6.1.3 Vidraria volumétrica	77
6.1.4 Dissolução da massa inicial	78
6.1.5 Fator de diluição	80
6.1.6 Incerteza de medição de x em y com a função de calibração	81
6.1.7 Incerteza padrão combinada	83
6.1.8 Incerteza expandida	84
6.2 Exemplo 2 – Modelagem da curva de calibração	84
6.2.1 Etapa A_1 - Gráfico de cada uma das séries como função o	as
concentrações	84
6.2.2 Etapa A ₂ – Determinação dos resíduos de cada uma das séries	87
6.2.3 Etapa A ₃ – Composição da resposta a partir das séries	88
6.2.4 Etapa A ₄ – Heterogeneidade da variância	89
6.2.5 Etapa A ₅ – Avaliação da linearidade	90
6.2.6 Etapa A ₆ – Modelo linear resultante	91
6.3 Exemplo 3 – Especificidade do método	93
A Tabela 6.10 mostra os resultados da fortificação, pela adição de um padrã	o a
um conjunto de dez amostras selecionadas como representativas da utilização	do
método.	93
O teste de hipóteses simultâneas é:	93
6.4 Exemplo 4 - Avaliação da exatidão do método analítico	94

6.4.1 Determinação do número de dias para avaliação da tendência	a do
método	95
6.4.2 Cálculo dos componentes de variância	97
6.4.3 Comparação da precisão	98
6.4.4 Avaliação da tendência do método	99
7 Considerações Finais	101
3 Referências bibliográficas	105
, 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	. 50

Lista de siglas

AAS Atomic absorption spectrophotometry

ASQ Society for Quality

ASTM American Society for Testing and Materials

EA European Co-operation for Accreditation

INMETRO Instituto Nacional de Metrologia, Normalização e Qualidade

Industrial

ISO International Organization for Standardization

IUPAC International Union of Pure and Applied Chemistry

MRC Material de Referência Certificado

TPD Teste Padrão de Dados

Lista de Figuras

FIGURA 1.1. DIAGRAMA ESQUEMÁTICO DO PROCEDIMENTO DE MEDIÇÕES
QUÍMICAS (ADAPTADO DE CURRIE, 1999)18
FIGURA 1.2. DIAGRAMA ESQUEMÁTICO DA ESTRUTURA DESTA DISSERTAÇÃO,
OBTIDO A PARTIR DA AVALIAÇÃO DO PROCESSO DE MEDIÇÕES
QUÍMICAS, PARA O PROCESSO DE VALIDAÇÃO DO MÉTODO
ANALÍTICO19
FIGURA 2.1. REPRESENTAÇÃO GRÁFICA DA METADE DOS INTERVALOS DE
CONFIANÇA, L, PARA AS RESPECTIVAS DISTRIBUIÇÕES DE
PROBABILIDADE: NORMAL, RETANGULAR E TRIANGULAR23
FIGURA 3.2. DETERMINAÇÃO DA FUNÇÃO RESPOSTA (ADAPTADO DE HUBERT ET
AL., 1999)
FIGURA 3.3. INCERTEZA DOS PARÂMETROS DA CURVA DE CALIBRAÇÃO
(ADAPTADO DE ASQ, 2001)
FIGURA 5.1. AVALIAÇÃO DA EXATIDÃO DE UM MÉTODO B A SER TESTADO. (A)
COMPARAÇÃO COM UM MÉTODO DE REFERÊNCIA A. (B)
COMPARAÇÃO COM O MATERIAL DE REFERÊNCIA CERTIFICADO, MRC.
54
FIGURA 5.2. ESCOLHA DO TAMANHO DA AMOSTRA COM SEGURANÇA DESEJADA 64
FIGURA 6.1. PRINCIPAIS FONTES DE INCERTEZA DOS RESULTADOS OBTIDOS NA
DETERMINAÇÃO DE UM COMPOSTO QUÍMICO76
FIGURA 6.2. CONTRIBUIÇÃO DA INCERTEZA NA DILUIÇÃO DA MASSA INICIAL 80
FIGURA 6.3. INTERVALO DE CONFIANÇA DE WORKING-HOTELLING PARA UM
VALOR DE CONCENTRAÇÃO DE X ₀ =1,130 MGL ⁻¹ 82
FIGURA 6.4. INCERTEZA DA CURVA DE CALIBRAÇÃO EM Y PARA CALCULAR A
INCERTEZA DE X83
FIGURA 6.5. AJUSTE DA SÉRIE 1: VARIAÇÃO DO SINAL EM FUNÇÃO DA
CONCENTRAÇÃO85
FIGURA 6.6. AJUSTE DA SÉRIE 2: VARIAÇÃO DO SINAL EM FUNÇÃO DA
CONCENTRAÇÃO86
FIGURA 6.7. AJUSTE DOS DADOS A PARTIR DAS DUAS SÉRIES88
FIGURA 6.8. DIAGRAMA DE NORMALIDADE DOS RESÍDUOS DA SÉRIE RESULTANTE.
89
FIGURA 6.9 DIAGRAMA DE HOMOGENEIDADE DE VARIÂNCIA PARA A SÉRIE
RESULTANTE 90

Lista de Tabelas

TABELA 2.1 - OS DIVISORES PARA ALGUMAS DISTRIBUIÇÕES DE PROBABILIDADE
TABELA 2.2. RELAÇÃO ENTRE O FATOR DE ABRANGÊNCIA K E NÍVEL DE
CONFIANÇA DA DISTRIBUIÇÃO NORMAL24
TABELA 3.1. ANÁLISE DE VARIÂNCIA PARA O AJUSTE, PELO MÉTODO DOS
MÍNIMOS QUADRADOS, DE UM MODELO LINEAR NOS PARÂMETROS
(N = NÚMERO DE MEDIÇÕES, B = NÚMERO DE CONCENTRAÇÕES E P =
NÚMERO DE PARÂMETROS DO MODELO)31
TABELA 3.2. OS VALORES CRÍTICOS A $^{2*}_{\alpha}$ PARA DISTRIBUIÇÃO NORMAL39
TABELA 3.3. TRANSFORMAÇÕES QUE ESTABILIZAM A VARIÂNCIA43
TABELA 5.1. EXEMPLO DE PROJETO PARA AVALIAÇÃO DA PRECISÃO
INTERMEDIÁRIA57
TABELA 5.2. COMPONENTES DE VARIÂNCIA DO MODELO HIERÁRQUICO60
TABELA 5.3. COMPONENTES DE VARIÂNCIA DO MODELO HIERÁRQUICO
TABELA 5.4 (A). VALORES DE ρ (vA, vB) $$ $\Phi I(T)$ (vA, vB) $$ OU Φ I(OIT) (vA, vB) , $\alpha\!\!=\!\!5\%$ E
β=5%66
TABELA 5.4 (B). VALORES DE p (vA, vB) Φ I(T) (vA, vB) OU Φ I(OIT) (vA, vB) , α =5% E
β=5%67
TABELA 6.1. VALORES DAS GRANDEZAS DE ENTRADA Y E INCERTEZAS
RESPECTIVAS80
TABELA 6.2. CÁLCULO DA INCERTEZA PADRÃO COMBINADA DEVIDO ÀS
DILUIÇÕES81
TABELA 6.3. COMBINAÇÕES DAS INCERTEZAS
TABELA 6.4 SÉRIE 1: VARIAÇÃO DO SINAL EM FUNÇÃO DA CONCENTRAÇÃO 85
TABELA 6.5 SÉRIE 2: VARIAÇÃO DO SINAL EM FUNÇÃO DA CONCENTRAÇÃO 85
TABELA 6.6 SÉRIE 1: ANÁLISE DE VARIÂNCIA PARA O AJUSTE, PELO MÉTODO DOS
MÍNIMOS QUADRADOS, DE UM MODELO LINEAR COM OS
PARÂMETROS, N = 5, B = 6 E P = 286
TABELA 6.7 SÉRIE 2: ANÁLISE DE VARIÂNCIA PARA O AJUSTE, PELO MÉTODO DOS
MÍNIMOS QUADRADOS, DE UM MODELO LINEAR COM OS
PARÂMETROS, $N = 5$, $B = 6 E P = 2$
TABELA 6.8 ANÁLISE DE VARIÂNCIA PARA O AJUSTE, PELO MÉTODO DOS MÍNIMOS
QUADRADOS, DE UM MODELO LINEAR COM OS PARÂMETROS, N = 10, B =
$6 \mathrm{FP} - 2$

TABELA 6.9 ESTIMATIVAS DOS COEFICIENTES DA CURVA DE CALIBRAÇÃO A	
PARTIR DA DISTRIBUIÇÃO CONJUNTA E ESTATÍSTICAS, AO NÍVEL I	ЭE
SIGNIFICÂNCIA α=5%	. 92
TABELA 6.10. ADIÇÃO DE PADRÃO EM AMOSTRAS USANDO O MÉTODO	
ALTERNATIVO (EM G DE GLICOSE POR 100G DE AMOSTRA)	. 93
TABELA 6.11. COEFICIENTES DE REGRESSÃO E ESTATÍSTICAS, AO NÍVEL DE	
SIGNIFICÂNCIA DE α=5%	. 94
TABELA 6.12. ANÁLISE DE VARIÂNCIA	. 94
TABELA 6.13. RESULTADOS ANALÍTICOS (EM MG) DO MÉTODO B E MÉTODO DE	
REFERÊNCIA A	. 97
TABELA 6.14. ANÁLISE DE VARIÂNCIA PARA O MÉTODO A	. 97
TABELA 6.15. COMPONENTES DE VARIÂNCIA DO MÉTODO A	. 98
TABELA 6.16. ANÁLISE DE VARIÂNCIA PARA O MÉTODO B	. 98
TABELA 6.17. COMPONENTES DE VARIÂNCIA DO MÉTODO B	. 98

"When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, your knowledge is of a meager and unsatisfactory kind".

Lord Kelvin